在俄勒冈州立大学的合作伙伴和 LanzaTech 的碳回收专家的帮助下,美国能源部太平洋西北国家实验室正在扩大将来自可再生或工业废气中的酒精转化为喷气燃料或柴油燃料的专利工艺。两项关键技术为节能燃料生产装置提供动力。


单步化学转化简化了目前的多步过程。新的 PNNL 专利催化剂将生物燃料(乙醇)直接转化为一种称为正丁烯的多功能“平台”化学品。微通道反应器设计进一步降低了成本,同时提供了可扩展的模块化处理系统

更快、更便宜的乙醇转喷气燃料即将问世,助力航空部门脱碳

新工艺将为将可再生和废物衍生的乙醇转化为有用的化学品提供更有效的途径。目前,正丁烯是通过大分子的能源密集型裂解或分解从化石原料生产的。新技术通过使用可再生或回收的碳原料来减少二氧化碳的排放。以可持续衍生的正丁烯为起点,现有工艺可以进一步提炼这种化学品,用于多种商业用途,包括柴油和喷气燃料以及工业润滑油。


生物质是一种具有挑战性的可再生能源,因为其成本高。此外,生物质的规模推动了对小型分布式加工厂的需求,最初研究的共同主要研究员 Vanessa Dagle 说,该研究发表于ACS 催化杂志。我们降低了过程的复杂性并提高了效率,同时降低了资本成本。一旦展示了模块化、规模化的处理,这种方法为本地化、分布式能源生产提供了一个现实的选择。


微观到宏观的喷气燃料


在商业化的飞跃中,PNNL 与俄勒冈州立大学的长期合作者合作,将获得专利的化学转化过程集成到使用新开发的 3D 打印技术构建的微通道反应器中。也称为增材制造,3D 打印使研究团队能够创建微型反应器的褶皱蜂窝,从而大大增加可用于反应的有效表面积与体积比。


在一个工艺步骤中使用新的多材料增材制造技术将微通道的制造与高表面积催化剂载体相结合的能力,有可能显着降低这些反应器的成本,俄勒冈州立大学首席研究员布赖恩保罗说.,我们很高兴能与 PNNL 和 LanzaTech 在这项工作中成为合作伙伴。


由于微通道制造方法的最新进展和相关的成本降低,我们认为现在是将这项技术应用于新的商业生物转化应用的时候了,该研究的联合主要研究员罗伯特·戴格 (Robert Dagle) 说。


微通道技术将允许在生产大部分生物质的农业中心附近建造商业规模的生物反应器。使用生物质作为燃料的最大障碍之一是需要将其长距离运输到大型集中生产工厂。


模块化设计减少了部署反应堆所需的时间和风险,Robert Dagle 说,随着需求的增长,可以随着时间的推移添加模块。我们通过增加数量来称其为扩大规模。


四分之一的商业规模测试反应堆将使用与 OSU 合作开发的方法通过 3D 打印生产,并将在 PNNL 华盛顿州里奇兰校区运行。


测试反应器完成后,PNNL 商业合作伙伴 LanzaTech 将提供乙醇以供该过程使用。LanzaTech 的专利工艺将钢铁制造、炼油和化工生产等行业产生的富含碳的废物和残留物,以及林业和农业残留物和城市垃圾气化产生的气体转化为乙醇。

更快、更便宜的乙醇转喷气燃料即将问世,助力航空部门脱碳

测试反应器每天将消耗相当于多达二分之一干吨生物质的乙醇。LanzaTech 已经扩大了用于从乙醇生产喷气燃料的第一代 PNNL 技术,并成立了一家新公司 LanzaJet,以将 LanzaJet 酒精转喷气机商业化。当前项目代表了简化该过程的下一步,同时提供来自正丁烯的额外产品流。


LanzaTech 首席执行官 Jennifer Holmgren 表示,PNNL 一直是开发乙醇喷气技术的强大合作伙伴,LanzaTech 分拆公司 LanzaJet 正在多个正在开发的工厂中使用该技术。乙醇可以来自各种可持续来源,因此是一种越来越重要的可持续航空燃料原材料。该项目显示出替代反应堆技术的巨大前景,这可能对航空部门脱碳的这一关键途径有益。


可调过程


自早期实验以来,该团队一直在不断完善这一过程。当乙醇通过负载在二氧化硅上的固体银-氧化锆基催化剂时,它会进行基本的化学反应,将乙醇转化为正丁烯,或者在对反应条件进行一些修改后转化为丁二烯。


但更重要的是,经过长时间的研究,催化剂保持稳定。在ChemCatChem上发表的一项后续研究中,研究小组表明,如果催化剂失去活性,可以通过简单的程序进行再生以去除焦炭,一种可以随时间积累的硬碳基涂层。将使用更高效、更新的催化剂配方进行放大。


我们发现了这种催化系统的概念,它具有高活性、选择性和稳定性,Vanessa Dagle 说,通过调整压力和其他变量,我们还可以调整系统以生成丁二烯(合成塑料或橡胶的基础材料)或正丁烯,后者适用于制造喷气燃料或合成润滑剂等产品。由于我们的初步发现,其他研究机构也开始探索这一新过程。


免责声明

我来说几句

不吐不快,我来说两句
最新评论

还没有人评论哦,抢沙发吧~