手机贤集

贤集网技术服务平台欢迎您

登录 注册

Science:武汉大学纳米孔过滤薄膜领域取得重大突破

文章来源: 材料科学与工程       发布时间:2019-06-18

6月14日, Science (《科学》)在线发表了武汉大学化学与分子科学学院在纳米孔过滤薄膜领域的最新研究成果。论文题为“Large-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration”(《大面积石墨烯纳米筛/碳纳米管薄膜在离子和分子纳滤中的应用研究》),第一署名单位为武汉大学,武汉大学化学与分子科学学院2014级博士生杨雁冰和2015级硕士生杨向东为共同第一作者,武汉大学化学与分子科学学院袁荃教授、加州大学洛杉矶分校段镶锋教授为通讯作者。

Science:武汉大学纳米孔过滤薄膜领域取得重大突破

二维纳米材料,例如石墨烯、过渡金属硫化物等,具有许多独特的物理、化学和电学性能。相比体相材料,二维纳米材料具有更多的比表面积和活性位点,开放的离子扩散通道,这使得锂离子(和碱金属离子)的快速传输和高效储存成为可能。尽管如此,二维材料中存在的权限仍然限制了其在电化学储能方面的应用,例如在电极处理和组装过程中,二维材料会重新堆积并聚合,导致材料的电化学活性面积显著降低,离子传输路径变长, 动力学减慢;此外,二维纳米材料高的比表面积可能消耗更多的电解液用于形成SEI,导致不必要的副反应。因此,构筑兼具高能量密度和高倍率性能的高效能量存储器件仍然是一项艰巨的挑战。

为解决上述问题,二维纳米材料的孔道调控与设计使得其在电化学储能应用上呈现出全新的面貌。相比于具有平滑表面的二维纳米片,多孔二维纳米材料可以为电化学储能应用提供诸多结构优势(如图示):首先,多孔二维纳米结构为电化学反应提供了大的有效表面积和丰富的活性位点,这对提高特定的能量密度有显着的贡献。其次,多孔道二维纳米材料可确保电解液对电极表面的有效浸润和渗透,促进电极-电解液界面间的快速电荷转移。第三,多孔二维纳米材料可显着缓解二维纳米材料的重新堆积问题,其内部开放的结构能够打开阻塞的活性表面以改善离子存储。最后,多孔二维纳米材料中的孔道结构有助于缓解电极材料,尤其是基于转换/合金化的负极材料,在电化学过程中的体积变化,从而赋予多孔二维纳米材料优越的力学性能,并改善其在电化学充放电周期中的结构降解。

Science:武汉大学纳米孔过滤薄膜领域取得重大突破

单原子层厚的纳米多孔二维材料是构建超薄、高效分离膜的理想材料。然而,将原子层厚的二维材料应用于实际分离研究面临着两方面的难题:一是如何制备具有优异机械强度和柔性的大面积无裂缝纳米孔二维薄膜;二是如何在薄膜内部引入高密度均一孔径分布的亚纳米孔,实现水分子的高效选择性通过和溶质分子的有效截留。


这项研究首次报道了一种具有优异机械性能的大面积石墨烯纳米筛/碳纳米管薄膜,具有高的水渗透率、离子和分子截留率以及优异的抗污染性能。此项研究克服了二维材料在实际分离领域的局限性,是将二维材料推向实际分离应用的关键一步,代表了二维材料和碳纳米材料分离薄膜发展过程中的里程碑式突破。

Science:武汉大学纳米孔过滤薄膜领域取得重大突破

石墨烯纳米筛/碳纳米管纳滤膜选择性分离示意图


该研究受到了科技部国家重点研发计划“纳米科技”重点专项青年项目(2017YFA0208000)、国家自然科学基金面上项目(21675120)、中组部“万人计划”青年拔尖人才支持计划等项目的支持。


注:文章内的所有配图皆为网络转载图片,侵权即删!

声明:“贤集网”的所有作品,版权均属于贤集网,如需转载,请注明出处;本网站转载的内容版权归原网站所有,如有侵权或其他问题, 请及时通过电子邮或者电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失

我来说几句


获取验证码
最新评论

还没有人评论哦,抢沙发吧~